Pre-elafin/trappin-2 and elafin attenuate the expression of known P. aeruginosa virulence factors To test whether the binding and/or translocation of the pre-elafin/trappin-2
and derived peptides could modify the behavior of P. aeruginosa, we assayed the expression of known virulence factors in the PHA-848125 clinical trial absence or presence of the various peptides and this was compared to that observed in the presence of azithromycin. At sublethal concentrations, azithromycin is known to interfere with the quorum sensing of P. aeruginosa and this was reported to reduce the expression of numerous genes encoding virulence factors as well as to retard PLX3397 in vitro formation of a biofilm [31, 32, 36]. We specifically assayed for the secretion of the siderophore pyoverdine, the peptidase lasB, the production of alginate and the development of a biofilm. Apart from the biofim development, which was estimated after 26 h of growth in the presence or absence of peptides, all assays were carried out on 24 h cultures
of P. aeruginosa. As shown in Table 2, pre-elafin/trappin-2 was the most effective peptide in all assays, and at 8 μM it reduced the secretion of pyoverdine and the formation of a biofilm by ~40%. At this concentration, it also reduced by approximately 25% the secretion of lasB and Histone Methyltransferase antagonist alginate although not in strictly dose-dependent manner. Interestingly, the effect of pre-elafin/trappin-2 paralleled that of azithromycin used at the same concentrations. Compared to pre-elafin/trappin-2 and azithromycin, the elafin peptide was only modestly less efficient with an observed ~30% reduction on the secretion of pyoverdine and biofilm formation. The cementoin peptide alone barely
(4 μM) or modestly (8 μM) affected the expression of these virulence factors. Hence, both pre-elafin/trappin-2 and elafin appear to attenuate the expression of some P. aeruginosa virulence factors and this correlates with their ability to bind DNA in vitro. Table 2 Attenuation of P. aeruginosa virulence factors by pre-elafin/trappin-2, Cell Penetrating Peptide elafin and cementoin Peptide [μM] %1 Pyoverdine % Las B % Alginate % Biofilm Pre-elafin/trappin-2 4 71 ± 2 83 ± 2 76 ± 2 70 ± 2 8 59 ± 2 75 ± 2 72 ± 2 57 ± 4 Elafin 4 82 ± 2 87 ± 4 79 ± 3 86 ± 2 8 69 ± 1 73 ± 5 77 ± 2 69 ± 2 Cementoin 4 96 ± 2 96 ± 4 95 ± 1 94 ± 2 8 91 ± 1 88 ± 4 87 ± 2 87 ± 2 Azithromycin 4 69 ± 2 85 ± 4 80 ± 3 62 ± 4 8 55 ± 2 76 ± 2 75 ± 3 44 ± 5 1The results are expressed as a percentage ± SD relative to P. aeruginosa cultures grown in the absence of peptides, which were set at 100%. For the assays of pyoverdine and lasB the values represent the mean of 3 experiments performed in duplicata. For the assays of alginate and biofilm formation the values represent the mean of 3 experiments. Discussion The aim of the present study was to determine the secondary structures of the N-terminal moiety of pre-elafin/trappin-2 (cementoin) and to investigate the mode of action of this peptide compared to elafin and pre-elafin/trappin-2 against P. aeruginosa.