These [Na+](i) transients are controlled by
multiple Na+-permeable channels and Na+-dependent transporters; spatiotemporally organized [Na+](i) dynamics in turn regulate diverse astroglial homeostatic responses such as metabolic/signaling utilization of lactate and glutamate, transmembrane transport of neurotransmitters and K+ buffering. In particular, near-membrane [Na+](i) transients determine the rate VE-821 chemical structure and the direction of the transmembrane transport of GABA and Ca2+. We discuss here the role of Na+ in the regulation of various systems that mediate fast bidirectional communication between neurones and glia at the single synapse level.”
“Probably the most unusual class of proteins in nature is the intrinsically unstructured proteins (IUPs), because they are not structured yet play essential roles in protein-protein signaling. Many IUPs can bind
different proteins, and in many cases, adopt different bound conformations. The p21 protein is a small IUP (164 residues) that is ubiquitous in cellular signaling, for example, cell cycle control, apoptosis, Q-VD-Oph transcription, differentiation, and so forth; it binds to approximately 25 targets. How does this small, unstructured protein recognize each of these targets with high affinity? Here, we characterize residual structural elements of the C-terminal segment of p21 encompassing residues 145-164 using a combination of NMR measurements and molecular dynamics simulations. The N-terminal half of the peptide has a significant helical propensity which is recognized by calmodulin while the C-terminal half of the peptide prefers extended conformations that facilitate binding to the
proliferating cell nuclear antigen (PCNA). Our results suggest that the final bound conformations of p21 (145-164) pre-exist in the free peptide even without its binding partners. While the conformational flexibility of the p21 peptide is essential for adapting to diverse binding environments, the intrinsic structural preferences of the free peptide enable promiscuous yet high affinity binding to a diverse array of molecular targets.”
“Among serotonin (5-HT) receptors, the 5-HT3 receptor is the only ligand-gated ion-channel. Little is known about the interaction between the 5-HT3 receptor and other 5-HT receptors and influence of 5-HT3 chronic activation on other 5-HT receptors and AZD1480 nmr the expression of key genes of 5-HT system. Chronic activation of 5-HT3 receptor with intracerebroventricularly administrated selective agonist 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) (14 days, 40 nmol, i.c.v.) produced significant desensitization of 5-HT3 and 5-HT1A receptors. The hypothermic responses produced by acute administration of selective agonist of 5-HT3 receptor (m-CPBG, 40 nmol, i.c.v.) or selective agonist of 5-HT1A receptor (8-hydroxy-2-(di-n-propylamino)tetralin)(8-OH-DPAT, 1 mg/kg, i.p.) was significantly lower in m-CPBG treated mice compared with the mice of control groups.