Increased levels of acetyl-CoAs inhibit PDC activity thereby reducing the ability to produce a substrate capable of entering the citric acid cycle thereby resulting in increased lactate production. The shift from short chain acetyl-CoA to lactate production is considered an indication that anaerobic processes exceed the capability of the citric acid cycle. In the setting of increased short chain acetyl-CoAs, carnitine
is capable of accepting PS-341 concentration the acyl group in the development of acylcarnitine (generally acetylcarnitine) effectively reducing the level of acetyl-CoA and extending the ability to continue high intensity exercise. This process is limited by the muscle carnitine levels which are gradually reduced with continued intense exercise. Thus, muscle
carnitine levels have been associated with the ability to sustain high anaerobic efforts with reduced output of lactate. Another multi-million dollar industry, see more based on enhancement of sports performance, is predicated on these anaerobic buffering processes and the role of carnitine. Investigations of the effects of L-carnitine supplementation and exercise performance have Elafibranor concentration yielded equivocal findings which have been carefully discussed in several published reviews [9, 14, 15]. The majority of exercise trials examining the efficacy of L-carnitine have based their work on the role of carnitine in the transport of fatty acids and therefore used endurance Atorvastatin performance protocols with outcomes measures
including maximal oxygen uptake (VO2 max) or markers of anaerobic threshold as determined during graded incremental exercise testing. In general, most studies have failed to document increases in VO2 max or performance markers whether examining untrained or athletic persons. The authors of those individual studies as well as the reviewers have generally attributed the lack of performance benefits with L-carnitine to the inability to increase resting muscle carnitine concentrations. However, several studies have reported increased VO2 max [12, 16, 17] and/or reduced post-exercise lactate accumulation [17, 18]. While there have been positive reports of carnitine supplementation and enhanced exercise performance and/or improved responses to exercise, there has been a general consensus to disregard the validity of those findings as the predominate opinion is that any performance enhancements must be predicated on increased resting muscle carnitine levels. Thus, there has been a general reconsideration of carnitine supplementation has a means not to improve exercise performance but rather to enhance recovery from hypoxic stresses associated with exercise [19, 20]. Recently, it has been shown that muscle carnitine content can be increased via an interesting approach.