All rights reserved.”
“Class II membrane fusion proteins have been described in viruses in which the envelope proteins are derived from a precursor polyprotein containing two transmembrane glycoproteins arranged in tandem. Although the second protein, which carries the membrane fusion function, is in general well characterized, the companion protein, which is a protein chaperone for the folding of the fusion protein, is less well characterized for some viruses, like hepatitis C virus (HCV). To investigate the role of the class
II companion glycoprotein E1 of HCV, we chose to target conserved cysteine residues in the Temsirolimus protein, and we systematically mutated them in a full-length infectious HCV clone by reverse genetics. All the mutants were infectious, albeit with lower titers than the wild-type virus. The reduced infectivity was in part due to a decrease in viral assembly, as revealed by measurement of intracellular infectivity and by quantification of core protein released from cells transfected with mutant genomes. Analyses of mutated proteins did not show any major defect in folding. However, the mutations reduced virus stability, and they could also affect the density of infectious viral particles. Mutant viruses also showed a defect in cell-to-cell transmission.
Finally, our data indicate that HCV glycoprotein E1 can also affect the fusion protein E2 by modulating its recognition by the cellular coreceptor CD81. Therefore, I-BET151 mw in the context of HCV, our data identify an additional function of a class II companion protein as a molecule that can control the binding capacity of the fusion protein.”
“The present study describes check details the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats,
and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application.