We report the current status of embryonic kidney culture, discussing issues such as the appropriate culture conditions and methods, histological results, values of and limitations to the different techniques used today. To optimize this system in vitro for the benefit of future studies we focused our efforts on evaluating and developing a new durable 3-dimensional organ culture system using a uniquely modified approach.
Materials
and Methods: Metanephric kidneys were microdissected from the embryos of timed pregnant WT C57BL/C6 mice on days 12 to 16 of gestation (embryonic days 12 to 16). Novel perfusion channels were created in the harvested embryonic kidneys before placing them in culture. Embryonic kidneys were placed on a 0.4 mu m pore size Transwell (R) membrane, cultured in base medium at a medium gas interphase and incubated
at 37C with fully humidified 5% CO2. Histological and immunocytochemical Mdivi1 analysis was performed to evaluate for signs of necrosis, and the structural integrity and functionality of organs during culture.
Results: We confirmed histologically that our organ culture system was capable of maintaining normal kidney structures significantly longer (mean 10 days) than previously reported standard protocols. Condensation and aggregation of the metanephric mesenchyma at the tips of the ureteral bud were observed, including the formation of well developed nephrons and glomeruli without evidence of necrosis. Organ maturation occurred in a developmentally appropriate
centrifugal pattern and the expression selleck products of key regulatory factors was demonstrated.
Conclusions: Our in vitro model replicates Q-VD-Oph solubility dmso closely the in vivo processes involved in normal kidney development. We also present what is to our knowledge the first demonstration of a durable 3-dimensional kidney culture system reported in the literature. This system may represent an uncomplicated method for in vitro kidney culture that we hope will serve as an effective adjunct to research focused on signaling pathways, development and regeneration as applied to the kidney.”
“The neurosteroid pregnenolone sulfate (PREGS), which is synthesized in glial cells, plays a significant role in learning and memory performance. The aim of this study was to investigate the regulation of expression of the steroid sulfotransferase SULT2B1a, which catalyzes the conversion of pregnenolone to PREGS, using the rat C6 glioma cell line. Rat C6 glioma cells expressed the SULT2B1a isoform, which sulfonates pregnenolone, but, neither the SULT2131b isoform, which catalyzes cholesterol, nor the prototypical steroid sulfotransferase SULT2A1 were expressed in these cells. Increasing concentrations of L-glutamic acid in the presence of cyclothiazide, which prevents AMPA receptor desensitization, attenuated SULT2B1a mRNA expression; however, neither NMDA nor kainic acid had a significant effect.